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Configurational studies of the Potts models 

C Domb 
Wheatstone Physics Laboratory, King’s College, Strand, London WC2R 2LS, UK 

Received 21 February 1974 

Abstract. Eigenvalues and eigenvectors are derived for the q-state two-level model intro- 
duced by Potts in 1952, and it is shown that for any net the partition function depends only 
on the topology and not on any two-degree vertices. This enables a simple method to be 
used calculating the partition functions of standard star topologies. The second q-orientation 
model introduced by Potts (termed the planar Ports model) is discussed, and it is shown that 
the same property holds. Partition functions for certain star topologies are derived for this 
model. By considering the asymptotic form of the coefficients in high-temperature expansions 
of the partition function, estimates are obtained of the critical temperatures of these models 
in terms of the geometrical properties of self-avoiding walks. 

1. Introduction 

In 1951 when the present author was at Oxford he pointed out to his research student 
R B Potts that the transformation discovered by Kramers and Wannier (1941) for the 
two-dimensional Ising model could be generalized to a planar vector model having 
three symmetric orientations at angles of 0, 2n/3, 4 4 3  with the axis. Hence the Curie 
temperature could be located for this model. He suggested that it might be possible to 
extend the result to a planar vector model with q symmetric orientations. 

After a detailed investigation Potts (1952) came to the conclusion that the trans- 
formation did not generalize to a planar vector model with q orientations, but instead 
to a q-state model in which there are two different energies of interaction which corre- 
spond to nearest neighbours being in the same state or different states; the case q = 4 
for this model had been considered previously by Ashkin and Teller (1943). For the 
planar model with q = 4 it was possible to locate the Curie temperature by an alternative 
method, but this failed for higher values of q. 

Once the transformation had been discovered and the Curie point located it seemed 
reasonable to expect that a complete solution would be forthcoming following the 
previous history of the Ising model. Surprisingly, even though two decades have now 
elapsed only one exact solution has emerged for the planar model with q = 4. The par- 
tition function for this model reduces to the square of a standard Ising partition function 
(Betts 1964). A useful insight into the model comes from the observation by Kasteleyn 
at the Aachen Conference on Statistical Mechanics, June 1964, that it is isomorphic with 
two uncoupled Ising spin systems ; the result is therefore valid for any network. 

For many years the above models attracted little attention because they did not seem to 
represent an interaction of physical significance. In 1971 Mittag and Stephen undertook 
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an algebraic investigation of the duality transformation, and provided a topological 
description analogous to that of Onsager for the Ising model (Wannier 1945). In order 
to differentiate between the two types of model they referred to the q-state two-energy 
model as the Potts model, and the planar q-orientation model as the Potts vector model. 
We are unhappy with this terminology since the first model is also a vector model. The 
case of four states corresponds to four symmetric tetrahedral directions in three dimen- 
sions, of five states to five symmetric directions of a simplex in four dimensions,. . . , of 
q states to q symmetric directions of a simplex in (q - 1) dimensions. Therefore we prefer 
to call the q-orientation model the planar Potts model ; we retain the terminology Potts 
model of Mittag and Stephen for the two-energy model, but if we need to be more specific 
we will call it the standard Potts model. 

Very recently a number of additional papers have appeared dealing with the Potts 
model. Straley and Fisher (1973) derived low-temperature series expansions for the 
three-state case on the simple quadratic lattice using different coupling fields for each 
orientation. They used these series to explore critical behaviour which they contrasted 
with the predictions of Landau theory. Golner (1973) endeavoured to use the Wilson 
renormalization group technique to explore the critical behaviour of the model. Baxter 
(1973) related the model to ferroelectric models which have been solved exactly, and 
hence obtained strong indications that the Potts model has a first-order transition when 
q > 4. Alexander and Yuval(l973) have given a physical interpretation of the three-state 
case and suggested that it could be usefully related to certain liquid crystal transforma- 
tions ; they also derived series expansions and considered the model with antiferro- 
magnetic interactions. Finally Enting (1974) has used the code method (Sykes et a1 1965, 
1973, Domb 1974, chap 1) to derive high-field expansions and estimate the exponent 6. 

Both the standard and planar models have a simplifying feature possessed by the 
n-dimensional classical vector model that only star lattice constants need be taken into 
account in computing high-temperature series expansions for the partition function (see 
Domb 1974, chap 1). The weights of these lattice constants can be determined using 
methods similar to those which have been developed for the classical vector model 
(Domb 1972b) and a series can be derived for the Curie temperature of a given lattice in 
terms of the geometrical properties of self-avoiding walks on the lattice. The latter has 
a special interest since the series expansions which have been derived for the three-state 
model converge only slowly. 

It is the purpose of the present paper to provide this configurational background for 
both Potts models, and hence to pave the way for the calculation of high-temperature 
expansions for the standard two- and three-dimensional lattices thus exploiting the 
extensive available tables of star lattice constants. 

2. Potts model : diagonalization of interaction matrix 

Although the eigenvalues and eigenvectors of the interaction matrix were determined by 
Potts (1952), we shall re-derive them rapidly so as to draw attention to some features 
which have not been pointed out before. For the simplex ofq vectors in (q - 1) dimensions 
there is a definite relation between -Jo the energy of interaction of spins in the same 
state, and -J1 the energy of interaction in different states; for example, with q = 3, 
J, = - J0/2. However, the general theory can be developed for arbitrary Jo, J 1 .  The 
q x q interaction matrix V has diagonal elements xo = exp /3Jo and non-diagonal ele- 
ments x1 = exp &I1 (/3 = l /kT) .  It has the symmetry of the permutation group, and the 
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51 = (1,1, .  . . f 1) 
g 2  = ( l ,w ,w2 , .  . . ,wq-') 

g' = (1, U', w2', . . . , w'(4- 1 

J 

> w = exp(2ni/q). 
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Hence we can write 

v = TAT, 

where A is the diagonal matrix 

From this it follows that 

v' = TAT 

and this has elements 

1 
(V')ii = - [Ar, + (4 - l )4 ]  

4 

1 
(Vqij = -(&-A\) 

4 
(i # j ) .  

(3) 
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We now consider the partition functions of simple finite nets. For a simple polygon 
of n identical systems 

z(n), = . v k i  = Tr(V”) 
i , j  ... k 

= A;+(q-l)q = An,[l+(q-l)w“] 
where 

(9) 

If the interactions among a group of r of the rings are changed from J o ,  J ,  to Jb, J ;  the 
partition function is changed to 

Z(n), = Tr(V‘rVs) = Tr(A”AS) 

= Agn; + ( q  - 1)X;A; = AgA;[ 1 + (q  - 1)W’*WS] ( r + s  = n). (1 1) 

Let us now consider a set of n links forming a 8 topology (figure 1, Sykes et a1 1966). 
The partition function is given by 

where the summation is over all q2 pairs of values of i, j. From (8) we find that 

Z(r, s, & = 7 {[A*, + (q - 1)41 [ A i  + (q - 1)41 [Ab + (4 - 1)41 
1 

4 

+ (q  - l)(& - A;) (As, - A;) (Ab - Ai,}. (13) 
We readily see that if the interactions differ on the three chains of the 8 topology the 
partition function is obtained by writing Ao(J), A , ( J )  in the first bracket, A,(J’), A,(J’) in 
the second, and A,(J”), A,(J”) in the third. Likewise, if the interaction is changed in a 
portion of one chain, say s‘ and s”, we obtain the new partition function by replacing 
At and Ai by A:‘X;;“n and AY‘A“’‘ respectively. Also if we ignore all vertices of degree two, 
and calculate the partition function for a net with interactions J ,  J’, J” we can immedi- 
ately write down the partition function for the general net with r ,  s, t links by replacing 
Ao(J) ,  A , (J )  by A*,, A:, Ao(J’), A,(J‘) by A;, A; and Ao(J”), A,(J”) by Ab, A: (figure 1). For 
such a net it is convenient to write (13) in the form 

1 

4 
where U’ is defined in (10). 

Z(r, S, t )e  = -Ao(J)A,(J’)AO(J’’)[l + ( ~ - I ) ( w w ’ +  W W ” +  w ’ w ” ) + ( ~ - ~ ) ( ~ - ~ ) w w ’ w ” ]  (14) 

We now consider the partition function for any net 

Figure 1. Replacement of two degree vertices by different interactions for a 0 topology. 
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the sum being taken over all links of the net ; it is convenient to write, for any interaction 
J ,  

where cij = 1 for all i, j and q i j  = - 1, (i # j ) ,  qii = ( 4 -  1). We note that cij and q i j  
are independent of the interaction, and 

V,j(J) = &(J)[cij+w(J)rlijl (16) 

for all i. We can use (16) to expand the partition function in terms of sub-graphs of the 
net in the same way as for the Ising model (Domb 1974, chap 6). Relation (17) ensures 
that all graphs with vertices of degree unity give zero contribution. However, higher- 
order odd vertices do not give zero contribution when 4 > 2, as can be verified 
from (14). 

The properties established above for polygons and 8 topologies will now be seen to 
hold more generally. If any interaction J is changed to J' the new partition function is 
derived by changing the appropriate w into w' and the multiplying factor Ao(J) into 
Ao(J');  and the form of the partition function is determined essentially by the topology 
of the net, the insertion of two-degree vertices giving rise to a trivial change. 

We mention one additional property which follows immediately from the symmetry 
of the interactions. For any articulated graph G o G' constructed from G, G' by identifying 
a common vertex, the partition function is given by 

(18) 
1 
4 

Z(G 0 G') = -Z(G)Z(G'). 

This ensures that in the expansion of In Z(G) for any net G only star sub-graphs need be 
taken into account (Domb 1974, chap 1). 

We shall now show that the general properties established in this section enable the 
partition functions for star topologies to be derived successively and simply. 

3. Partition functions of star topologies 

From the previous section we see that the partition function for a net G can be put in the 
form 

Here we are confining attention to a star topology G which has no vertices of degree 2, 
and all of whose bonds have different interactions .I('); the product is taken over all these 
bonds. The function F(GIw(')) characteristic of the topology G consists of a sum of 
partial products of the w(') with appropriate coefficients, 

Only terms corresponding to closed graphs enter into (20). 
We build up the star topologies according to cyclomatic number c (Sykes et a1 1966). 

If we put one of the w(') equal to zero in (20), this corresponds to removing a bond from 
G which leaves a graph of cyclomatic number c- 1. Hence by putting each of the w(') 
successively equal to zero, all the coefficients for a star of cyclomatic number c can be 
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determined from stars of cyclomatic number (c- 1) with the exception of the highest 
coefficient, the product of all the w ( ~ ) .  From (16) this coefficient is given by 

c n si;' (21) 
i,j r 

where the product r is over all bonds of the net G and each i and j takes q values. 
It is straightforward but tedious to evaluate (21) directly for a given net. We can write 

1 
r ] . .  = -- cij + 6ij 
" 4 

and proceed to separate out terms in the product (21); these correspond to dropping 
1, 2, 3 . .  . lines from G and seeing how many connected clusters remain. The procedure 
closely parallels the calculation of the mean number of connected clusters in percolation 
theory (Essam 1972). 

However, it is simpler to use the method introduced by Domb (1972b) for the 
calculation of partition functions for the classical vector models. We use the term 
laddering to denote the replacement of a single interaction J* by a pair of interactions 
J' and J" in parallel (figure 2). Thus xz is replaced by xbx; and xT by xix;. It is easy to 
deduce from (10) the transformation 

(23) 
w' + w" + (q  - 2)w'w" 

1 + (q  - 1)W'W" 
w* = . 

Figure 2. Ladder transformation. 

Applying this to the simple polygon with interactions J ,  J*  for which 

F(pJw"') = 1 + (q - l)ww*, 

F(ejw(r)) = 1 +(q- i)(wwr+ w w " + w w ) + ( q -  i ) (q-2)www',  

(24) 

(25) 

we readily find that for the 8 topology, 

in agreement with the direct calculation (14). If we apply a double laddering procedure 
to the polygon (figure 3) we obtain from 

F(p(w"') = 1 +(q-l)w:wfw,w;, (26) 
the characteristic function for the j topology 

F(pIw'") = 1 +(q - l)(W,Wi + w2w;)+(q - 1)2w, w; w2w; 

+ (q - 1) [WI + w; + (q - 2)w, w;] [w2 + w; + (q  - 2)w2w;] w3 w; . 
The corresponding function for the y topology is obtained by making J ;  infinite, ie 
w; = 1, and for the 6 topology by making J ,  and J ;  infinite, ie w, = w; = 1. 
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Figure 3. Use of two ladder transformations to derive the B topology. 

To deal with non-ladder topologies we make a suitably chosen bond infinite, and 
obtain a relation for the unknown coefficient in terms of a coefficient of a known or 
laddered topology and a coefficient of a graph of lower cyclomatic number corresponding 
to removing the bond. For example, for the largest coefficient 4 2 3 4 5 6  of the U topology 
we make bond 34 infinite, and relate to coefficients in the y and 0 topologies (figure 4) 

Figure 4. Allowing a bond to become infinite in the tl topology. 

We now run briefly through the graphs of cyclomatic number 4 (figure 5). All 
except A, B and F can be obtained by laddering. By making bond 15 of F infinite we 
relate the highest coefficient to the N and ct topologies and deduce that its value is 

F B A 

Figure 5. Non-ladder topologies of cyclomatic number 4. 

(As a check we can make 12 infinite and relate to the J and y topologies.) By making 
bond 12 of the B topology infinite we relate to the F and /? topologies, and deduce that 
the highest coefficient is 
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By making bond 12 of the A topology infinite we relate to the F and a topologies, and 
deduce that the highest coefficient is 

(4 - 1 ) (q  - 2)(q2 - 6q + 10). (30) 

Having provided a mechanism for writing down the partition functions of star 
topologies we can use the same method as for the Ising model (Sykes et a1 1974) to derive 
extensive high-temperature series expansions for In Z for standard two- and three- 
dimensional lattices. 

4. Planar Potts model 

For the planar Potts model with q states the interaction between spins in states i and j 
is 

(31) 

Hence the interaction matrix V has elements 

vj = exp pJ cos(Oi - O j ) ,  (32) 

which depend on lei - €JjJ only, and therefore it has the symmetry of the permutation 
group. The eigenvectors are the same as in (l), and are independent of the interaction. 
The same would apply to any model whose interaction depends on lei - Oil, for example 
the model recently considered by Guttmann et a1 (1972). 

The eigenvalues of the interaction matrix are thus given by 

1 
4 -  1 

Lo = 1 f(s) 
s = o  

s = o  

Sincef(s)is equal tof(q -s), we see that I ,  is equal to I q - , .  Hence I , ,  1 2 , .  . . , are doubly 
degenerate. The general pattern of behaviour depends on whether q is odd or even. 
In the former case Lo is the only non-degenerate eigenvalue, the remainder being doubly 
degenerate. We can write 

(4- 1)/2 

I o  = e x p p ~ + 2  1 f(s) 

(34) 
s =  1 

( 4  - 1 ) / 2  
I t  = exp PJ + 2 1 f(s) cos(2nst/q) ( t  = 1,2 , .  . . , ( 4 -  1)/2). 

s =  1 
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In the latter case both do and A q / 2  are non-degenerate and the remainder are doubly 
degenerate. We now have 

A. = expBJ+ exp -BJ+2  C f ( s )  
qiz - 1 

s =  1 

( t  = 1,2, . . . ,+q- 1) (35) 
q / z  - 1 

At = exp/?J+(-l)'exp -/?J+2 
s =  1 

qiz - 1 

Aqi2 = exp PJ + ( - l )q/ '  exp - /?J + 2 C ( - 1)sf(s). 

The difference in behaviour between odd and even q is to be expected because of the 
different symmetries in the two cases. When q is even the model is invariant under a 
reversal of magnetic field, whereas when q is odd it is not. Likewise we can expect special 
behaviour when q is a multiple of 4 since the model is then invariant under a rotation by 
90" of magnetic field. 

We have noted that for q = 3 this model is identical with the standard Potts model, 
and for q = 4 it is isomorphic with a pair of non-interacting Ising models; for q = 6 it 
can be regarded as a triplet of Ising models with a coupling between them, and so on 
for higher even values of q. As q + c/3 we are led to the plane-rotator model first intro- 
duced by Vaks and Larkin (1965). From (34) or (35) we then find that the eigenvalues 
tend to the limiting values 

(36) 

the lowest state being non-degenerate and the higher states all doubly degenerate. This 
agrees with the result of Joyce (1967). 

The matrix T given by (3) diagonalizes V, and the general arguments of 8 2 apply 
equally to the planar Potts model. In particular the partition function for any net is 
determined by the topology of the net and all two degree vertices can be ignored ; and if 
the interaction of any portion of a net is changed from J to J',  the new partition function 
is derived by changing any A,(J) in the old partition function into d,(J'). Because of this 
property we can use the laddering technique of 0 3 to derive the partition functions of 
most of the star topologies. However, the problem is more complex since we do not now 
have a single variable w, but a number of variables 

s =  1 

d r  = I r ( B J )  ( r  = 0, 1,2, * . '), 

w1 = A l / A O ,  W z  = &/Ao ,  . . . , w,  = /$/Ao, . . . 9 (37) 

we shall therefore discuss the laddering procedure in more detail. 

5. Laddering in the planar model 

From relation (7) we can calculate the elements of the matrix (Vr) in terms of the eigen- 
values as follows : 

(4  - 1 )/2 

(Vr)i,i+t = - A',+2 II:cos- 2"L) (q odd), 
4 l i  s = l  4 



1344 C Domb 

for t = 0, 1,2,. . . . From these relations we can in principle calculate the partition 
function of any finite cluster in terms of the eigenvalues. 

If we take the particular case of r = 1, we rederive the original matrix V, and hence 
we have the relations between the interaction function f ( t )  defined in (33) and the As : 

(q  even). 
2nst q / 2  - 1 

f ( t )  = - n o  + 2 1 As cos -+( - l)5Iqi2 
4 li s = l  4 

We now use the laddering transformation depicted in figure 2, in which the interaction J* 
is replaced by J'  and J" in parallel. The function f ( t * )  is replaced by f ( t ' ) f ( t " )  (in an 
obvious notation); using (34) or (35) for in terms off(t*) or f ( t ' ) f ( t " ) ,  and then (40) or 
(41) to transform these back to 4 ,  &' we derive an 'addition theorem' for the eigenvalues 
under the laddering transformation. 

The detailed calculation is somewhat tedious but the result is simple and straight- 
forward. We find that for the lowest eigenvalue 

( 4  - 1 ) / 2  

qn; = n;n;+2 1 n$n; (4 odd) (42) 
s =  1 

s= I 

For the higher eigenvalues, writing 

it is clear by symmetry that dti  is equal to d f j ,  and we can confine attention to the case 
a 2 b. We then find that dti  is equal to 1 when the following conditions are satisfied, and 
is otherwise zero : 

a-b = t 
a+b = t (45) 
a+b = q- t .  

The coefficient q which multiplies the left-hand side of (42), (43) and (44) arises because 
of the insertion of a new vertex in the laddering procedure. 

We quote a few specific examples. When q = 3 the transformation is 

3n; = n;n;+2n;n; 
3ny = nbn;+n;n;+n;n;. 

Writing w = Al /A0  we rederive the transformation (23) with q = 3, since in this case both 
Potts models are identical. 

When q = 5 the transformation is 
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The term &A; in the second line arises from the third condition in (45); likewise the terms 
A;,?; in the third line. 

When q = 6 the transformation is 

6A: = Abn’; + + 2(A;A; +&A’;). 

Again there are a number of terms corresponding to the third condition in (45). 
It is interesting to take the transformation to the limit when q + oc) when the eigen- 

values are given by (36). The third condition in (45) ceases to have any significance, and 
the transformation corresponds to the well known addition theorem for Bessel functions 
(Watson 1944, p 365) 

30 

I,(K‘ + K”) = I, + ,JK’)Z,,,(K’’). 

The partition function of a polygon is given by the trace of Vr,  and is therefore 
m = - m  

(4 - 1 )/2 

Al,+2 1 n: (4 odd) 
s =  1 

412 - 1 
nl,+n;,2+2 n: (q even). 

s =  1 

(49) 

From this we can use the transformations to derive the partition functions of all star 
topologies which can be derived by laddering. For example, for the 8 topology in figure 1 
if we write 

where by symmetry erst = csrt = c t r s . .  . , we find the following values for the nonzero 
Crsr : 

q = 5 :  c o o 0  = 1, (52) 

cOOO = c 3 3 0  = l, (53) 

C o o 0  = 1, Cr+s,r,s = 2. (54) 

C l l O  = c 2 2 0  = c 2 1 1  = c 2 2 1  = 2 
= 6:  C l 1 0  = c 2 2 0  = C Z l 1  = c 3 2 1  = c z 2 2  = 2. 

In the limit as q + 00, 

For non-ladder topologies the partition functions are more difficult to calculate for 
the planar model than for the standard Potts model. Techniques similar to those 
described for the plane rotator model should be applicable (Domb 1972b), but we defer 
a detailtd discussion to a subsequent publication. 

6. Critical temperatures 

For the Ising model (q  = 2) the critical value w, can be simply related to the geometric 
properties of self-avoiding walks (SAW) (Domb 1970, 1972a). In fact the SAW limit, p, 
provides a good approximation to l/w, in three dimensions, the error being about 2 %. 
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This is because there are no correction terms of order 1/11, the first correction term being 
of order 1/p2. 

When we use the same approach for the Potts model with q > 2 we find that the 
above result is no longer valid Because of the contributions of configurations of odd 
vertices there is now a first-order correction term which becomes increasingly significant 
as q becomes larger. Using the self-avoiding N-gon as a basis for classification of terms 
of order d" in In 2 as in Domb (1972a), we can write these terms in the form 

(q-l)p,d"expN(Blw+B2w2+. ..), (55) 

pN - pNNg. (56) 

where p N  is the lattice constant of the N-gon, which has asymptotic value 

B ,  contains contributions from B(N ; 1) graphs, and B ,  from B(N ; l), B(N ; 2), b ( N  ; 1, l), 
y(N; 1 , l )  and a ( N ;  1, 1) in the notation of Domb (1972a). In terms of the statistics of 
contacts on SAW 

The critical temperature to second order in 1/11 is then given by 

Substituting numerical values for the face-centred cubic (FCC) lattice we find that 

B ,  z 0*72(q-2) 

B2 N - 0*72(q - 1) + 5.8(q - 2) - 0.4(q - 2), + 0*7(q - l)(q - 2)(q - 3). 
(59) 

For the plane triangular lattice in two dimensions the estimates of the contact statistics 
are much rougher, 

We note that the deviations from the SAW approximation are opposite in sign when 
q 2 3 from the Ising model (q = 2), and they increase steadily with increasing 4. The 
qualitative behaviour as a function of q follows that of the quadratic lattice for which w, 
is known exactly, 

& - f  w, = -. 
q-1 

Taking 4 = 3 we obtain the following numerical estimate for the FCC lattice 
(p = 10.035): 

The corresponding Ising estimate to this order is 9.96, the correct value being 9.828. 
The planar Potts model with q = 3 is identical with the standard Potts model above. 

However, once 4 > 3 the pattern changes completely and all first-order terms in 1/11 are 
zero. When 4 = 4 the critical temperature is the same as with q = 2 (Ising model). 
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When 4 2 5 the value of w, to second order in l /p  is the same as for 4 = CO, 

and only higher-order terms are affected?. We thus see that w, for the planar Potts model 
converges rapidly with increasing 4 to the value of w, for the plane-rotator model. 

7. Conclusions 

Our major aim in the present paper has been to lay the foundation for the development 
of extensive high-temperature series expansions for the Potts models analogous to those 
which have been developed for the Ising model. We have found general indications that 
such series should converge reasonably in three dimensions, but that the rate of con- 
vergence will be slower than for the Ising model, particularly as q increases. 

We have not discussed the susceptibility which diverges strongly and is important 
for obtaining an accurate estimate of T, . This susceptibility can be defined in different 
ways (Straley and Fisher 1973). From the point of view of the discussion in the present 
paper the most useful quantity to calculate is the sum of the pair correlations, which can 
be simply related to the partition functions of finite clusters. 

We hope to discuss the detailed calculations in a subsequent publication. 
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